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XASA TT F-10,026 

To supplement previous reports on one-dimensional &~p- 

metric m t i o n s  of an e lec t r ica l ly  conducting gas i n  a mag- 

net ic  f ie ld ,  when the velocity can be represented by a formula 

of type v = r @ ( t ) ,  the  paper considers flows f o r  which the 

velocity coqonents depend l inear ly  on the distarice coordi- 

nates, but where the  flow i s  no longer one-dimensional. 

notion of the  gas i s  assumed t o  be two-dimensional, and the 

magnetic f i e l d  i s  taken as perpendicular t o  the plane of flow. 

The solution obtained depends on an arb i t ra ry  function and 

several a rb i t ra ry  constants. 

uniform expansion of the gas takes place along the  magnetic 

The 

The case i s  considered where a 

f ie ld ,  a t  a tm-dbens iona i  flow tmnsverse t o  it. 

1. The system of equations of nagnetic gas dynamics (Bib1.1, 2)  describing 

two-dimensional nonstationary motion of the gas i n  a magnetic f i e l d  perpendicu- 

l a r  t o  the  plane of flow, has the fom' 

dr au au l a  

x + u x + v * = - - -  bo i3V ab 

- + u x + n - =  %t aar - - - ( p +  P 

; a p t -  

a 

% Everywhere i n  this Section, we assume v = 0. 

-w Numbers in the  margin indicate  pagination in the or iginal  foreign text. 
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where u, v a re  the components of the velocity vector, p the  pressure, p the 

density, H the  mgnet ic  f i e l d  strength, t the time, and x, y rectangular Car- 

tes ian  coordinates. The gas i s  assumed t o  possess inf'inite e l e c t r i c  conductivi- 

t y  

means of the  re la t ions  

The quant i t ies  p, p and H w i l l  be l e f t  as before. 

d i f fe ren t ia t ion  w e  w i l l  have 

For the operations of 

If the  system of equations (1.1) is  transformed t o  a new form by means of 

eqs.(1.2), (1.3) and i f  we put u1 = vl = 0, we will obtain 

The l a s t  three equations of the  system (1.4) yield 

where p a ( 4 ,  T), ho(E, 7 )  and p,(S, TI) a re  a rb i t r a ry  f u c t i o n s .  

expressions f o r  p, H, and p i n to  the first two eqEations of the  system (l.L), 

we obtain 

Subst i tut ing the 
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The var iables  a re  separated i f  we assume t h a t  

where a ,  b, n and m are  a r b i t r a q  constants. 

The system of eqxations (1.6) i s  eas i ly  integrated,  yielding 

where F i s  an a rb i t ra ry  function, and d and c a re  a rb i t r a ry  constants. 

Thus, we have 

Returning t o  the  original variables and using eqs. (1.2), we obtain the 

following solution of the  system o f  equations (1.1): 

Since the functions f and $! enter i n t o  t h e  system of equations (1.7), which 

i s  t o  some degree dependent on y ,  only the  posi t ive solutions o f  the  system of 

equations (1.7) need be considered. From the  condition t h a t  D be posi t ive,  it 

fCl lC>ZS 

sa t i s f ied .  

t h e  f-;?ctlc= mdst b e  S L C h  thzt t h e  ir,eq&ality F' ( 7 )  > 9 is 

It follows from the  expressions fo r  pressure and density t h a t  
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Hence, it i s  clear  t ha t  the arbi t rary function F(cY) i s  determined by pre- 

scribing the entropy d is t r ibu t ion  among the  f l u i d  par t i c l e s  a t  a certain ins tan t  

of time. 

A cylindrical  surface on which, a t  a certain ins tan t  of time to, the pres- 

sure, density, and magnetic f i e l d  strength a re  a l l  equal i s  of the  form 

On any of such cylindrical  surfaces the t o t a l  pressure, which i s  the SUE 

of the magnetic and hydrodynamic pressures, will dqend only on the time t: 

It i s  easy t o  demonstrate t ha t  the surface under consideration will a t  a l l  

times consist of the very same f lu id  particles.  On the bas i s  of the above, such 

a surface may be taken as the  f ree  boundary of the conducting gas i n  the mag- 

n e t i c  f ie ld .  

balanced by the pressure oi' the external magnetic f i e l d  E:/&, i .e.,  

In this case the t o t a l  pressure p.,:- on the boundaq will be 

L M  

From t h i s  we f ind the in tens i ty  of the  e x t e r n d  magnetic f i e l d  as a func- 

t i o n  of time. 

Depending on the values of the parameters a, b, c, and c/, this boundary may 

be an e l l ipse ,  a hyperbola, o r  a pa i r  of intersect ing s t ra ight  l ines .  

L e t  us  consider the case when a > 0, b > 0, n > C and m > 0. 

Let the function F(@) be a continuous mnotonically increasing function, 

From the conditior! that  t h e  hydrodynamic pressure p and tne  bounded a t  zero. 

magnetic pressure E?/& be posit ive,  it follows tha t  t h e  constants d and c must 
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be such t h a t  the  inequal i t ies  

d+RW?34 e+=?@&>@ 
-. 

a r e  sa t i s f ied .  

mL. --.-A"-- +,,& %vLUIUCZLY, OE xhich F + ~  = const,  h i l l  be sn e l l ipse .  I f ,  a t  the  b i 5 i a l  

time t = 0, we assign 

f(0) = 10 > 0, 4.40) = rp. > 0. rm = V{O) = 0, . (1.10) 

then it w i l l  follow from the solution (1.8) tha t ,  a t  t = 0, we have u = v = 0. 

Eoth the  hjdrodpamic and the  magnetic pressure a t  the i n i t i a l  time increase wi th  

the  distance from the  center of the  ell ipse.  

f" and C "  w i l l  be negative, and since r" (0) = C' (0) = G, then f' and t' f o r  

t 7 0 w i l l  also be negative. 

pos i t ive  values f, and t, a t  t = 0 t o  zero values. 

It I"o1lows from eqs.(l.7) t h a t  

For t h i s  reason, f and 1!1 w i l l  decline from the  

It i s  c lear  from the  expression for  the  veloci ty  components in t he  soh- 

t i o n  (1.8) and from our  analysis  o f  the behavior of the functions f and $ t h a t  

t he  motion under consideration ~511 describe the compression of a plasma cylin- 

der,  a t  rest a t  the  i n i t i a l  t h e ,  i n  the magnetic f ie ld .  

In  the  general case, the -stem o f  d i f f e r e n t i a l  equations (1.7) can be 

solved only by the numerical method. Simplifications a re  obtained by a special  

select ion of the constants a, b and bj. an addi t ional  assumption with respect to 

t he  functions f and e .  
If a = b > 0 and f = 8, then t h e  s y s t e m  of d i f f e r e n t i a l  equations (1.7) re- 

duces t o  a siingle equation m c h  i s  integrated i n  quadratures: 

j *= -  rf-'InP-'+ AI& (1.u 1 

L e t  us prescribe the i n i t i a l  conditions in the form f(0) = f'o , f' (0 )  = 0. 

For s l q l i c i t , ~ ,  let, y = 3 /2 ,  

equation of the  f i r s t  order, and f o r  v = 3/2 w e  have 

&pation (1.11) i s  eas i ly  transformed into an 
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where 
(1.12) 

L e t  u s  consider the case when m < 0, n > 0, m + 2nf0 > 0. Then, y > 0 and 

The right-hand side of eq.(1.12) will therefore be pos i t ive  i f  f has a fl > 0, 

value between fo and fl. 

Integrat ing eq.(1.12) under the condition t h a t  f ( 0 )  = fo ,  we obtain 

(1.13) 

The p lus  sign i s  taken i f  f l  < fo ;  the minus sign, i f  f, > fg. 

The solution (1.13) shows t h a t  the function f i s  a periodic function of t ,  

assuming values between fo and fl. 

In the  presence of symmetry, the  motion of any f lu id  p a r t i c l e  of the gas 

w i l l  be described by the  equation r = f ( t ) r o / f o ,  where r i s  the  coordinate of  

t h e  specified f lu id  p a r t i c l e  a t  t = 0. 

It follows from the behavior of the function f t h a t  the  p a r t i c l e  w i l l  osci l -  

l a t e  between the two extreme posit ions r, and r, = f, r, /fc, , i.e., there  will be 

a pulsation of the  p l a s m  cylinder instead of a motion of the type of  an accumu- 

l a t i o n  of the  gas a t  the or ig in  of coordinates and a dispersion of the gas 

toward in f in i ty .  

We note t h a t  the osc i l l a to ry  motions considered here are charac te r i s t ic  

I n  fac t ,  if i n  our solution (1.8) we only of magnetic gas dynamics a t  v # 2. 

s e t  m = 0, c = 0, we w i l l  obtain the solution of the  equations of conventional 

gas dynamics (Bibl.3). 

o sc i l l a to ry  motions without accu,rmlation of gas a t  the  origin of coordinates 

will be absent. 

It w i l l  be clear from eqs.(l.7) t ha t ,  a t  m = c = 0, 
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A t  y = 2, eqs.(1.5) permit a separation of variables without bounding a t  

ho, which we did i n  eq.(1.6). 

t ions  (1.1) will be found t o  depend on two arb i t ra ry  functions, and t o  have the 

I n  t h i s  case, the solution of the system of  e q u -  

where h,(x/f, y/$) and F(cY) are  arbi t rary functions of  t h e i r  arguments, while 

n, d,  a, and b a re  a rb i t ra ry  constants. 

The functions f and tb. sa t i s fy  the system of equa+' "ions 

r f -1-9-1 = 0, y + bnlp-2j-1 = 0. 

2. Up t o  now we have assumed the  magnetic f i e l d  t o  be directed along the  

Oz a x i s  and the gas t o  be without motion i n  tha t  direction. 

Let us now consider the  case when uniform expansior, of the gas takes place 

along the  magnetic f i e ld ,  Le., when the velocity component along the Oz curis 

i s  of t h e  form w = z/(t + & ). 

coordinate z. 

dynamics, describing motion i n  the plane xOy, w i l l  be the system of equations 

(1.1) a t  v = 1. 

The quant i t ies  p, D ,  and H do not depend on the 

Vnder these assmptions, the system of  eqQations of magnetic gas 

Proceeding i n  analogy t o  Section 1, we may obtain the following solution of 

t he  s g s t e m  of equations (1.1): 

where F(r) i s  an a r b i t r a w  function, while a ,  b ,  c, n, m, d ,  

constants. 

are  a rb i t ra ry  

The functions f and $ a r e  the solution of the system of  equations 
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It can be proved by d i r ec t  substi tution t h a t  eq.(2.1) i s  a solution of the 

system of  equatioris (1.1.). 

BIBLIOGRAPHY 

1. Kulikovskiy, 

Pinch (K v 

A.G. : 

'pro su 

Contribution t o  the Question of Pulsation of the Plasma 

pul ' sa t s i i  Flazmennogo shnura). Dokl. Akad. Nauk SSSR, 

?ol.llL, Ho. 5, 1957. 

2. Ladikov, Yu.P.: Some E h c t  Solutions of  the Equations o f  Unsteady Kotion in 

Magnetic Hydrodynamics (Nekotoryye tochnyye resheniya uravneniy neustano- 

vivshikhsya dvizheniy v magnitnop gidrodinamike). Dokl. Akad. Nauk SSSR, 

Vo1.137, No.2, 1961. 

3 .  Ovsyannikov, L.V.: New Solutions o f  the  Equations of Hydrodyxamics (Novyye 

resheniya uravneniy gidrodinamiki). 

No.1, 1956. 

Dokl. Akad. Rauk SSSR, V01.111, 

. 

8 


